EK23-EVR-01 HC (Male) near me in Coimbatore
Understanding EK23-EVR-01 HC (Male) in Coimbatore
What is EK23-EVR-01 HC (Male) in Coimbatore?
The EK23-EVR-01 HC (Male) is a preventive health package tailored for men to monitor overall health and detect potential diseases and deficiencies early on.
What does EK23-EVR-01 HC (Male) measure?
Contains 64 testsSerum Calcium
The Serum Calcium test measures the levels of calcium in the body. Calcium is the most abundant mineral in the body; most of it is present in the bones and teeth, and the remaining portion (around 1%) is found in the blood. It is usually present in two forms in blood in about equal amounts: "bound calcium," which is attached to proteins in the blood, and "free calcium or ionized calcium," which is not attached to any protein.
The Serum Calcium test cannot be used to check for lack of calcium in your diet or osteoporosis (loss of calcium from bones) as the body can have normal calcium levels even in dietary calcium deficiency. Moreover, the body can normalize mild calcium deficiency by releasing the calcium stored in bones.
Know more about Serum Calcium
Diabetes Screening (HbA1C & Fasting Sugar)
The Diabetes Screening (HbA1C & Fasting Sugar) test includes a glycosylated hemoglobin test and a glucose-fasting blood test. The glycosylated hemoglobin test measures the percentage of glycosylated hemoglobin in the blood, while a glucose-fasting blood test measures the glucose level during fasting. Glucose is the main form of sugar utilized by the body to release energy; it is absorbed by the intestine and distributed to all organs through blood. These tests help your doctor to monitor your blood sugar levels and manage your diabetes well.
Know more about Diabetes Screening (HbA1C & Fasting Sugar)
HbA1c (Hemoglobin A1c)
An HbA1c (Hemoglobin A1c) test precisely measures the percentage of sugar-coated or glycated hemoglobin in your blood. The test results represent the proportion of hemoglobin in your blood that has been glycated.
Hemoglobin, a vital protein found in red blood cells, is responsible for transporting oxygen throughout the body. Hemoglobin A is the most abundant form of hemoglobin, and when blood sugar levels increase, a higher proportion of hemoglobin A becomes glycated. As red blood cells have a lifespan of approximately 120 days, the sugar molecules remain attached to the hemoglobin for the duration of the cell's life. Consequently, the HbA1c test offers insight into your average blood sugar levels over the past 8 to 12 weeks.
FBS (Fasting Blood Sugar)
A fasting blood sugar test measures the glucose level in the body under overnight fasting conditions. Glucose serves as the body's energy currency and is broken down through metabolism to produce energy. Hormones and enzymes produced by the liver and pancreas control this process. The hormone insulin, produced by the pancreas, regulates blood glucose levels. When these levels are high, such as after a meal, insulin is secreted to transport glucose into cells for energy production. Elevated glucose levels in the body after fasting may indicate a risk of developing prediabetes or diabetes, which can be of two types- Type 1, caused by little or no insulin production, and Type 2, caused by insulin resistance or decreased insulin production.
Complete Hemogram (CBC & ESR)
A Complete Hemogram (CBC & ESR) test combines a complete blood count (CBC) test and an erythrocyte sedimentation rate (ESR) test. The CBC test evaluates all of your blood cells (red, white, and platelets) that reflect your general health. The ESR test, on the other hand, determines the presence of any inflammation or infection in your body.
Know more about Complete Hemogram (CBC & ESR)
ESR (Erythrocyte Sedimentation Rate)
An ESR test measures the rate at which red blood cells (erythrocytes) settle (sediment) in one hour at the bottom of a tube that contains a blood sample.
When there is inflammation in the body, certain proteins, mainly fibrinogen, increase in the blood. This increased amount of fibrinogen causes the red blood cells to form a stack (rouleaux formation) that settles quickly due to its high density, leading to an increase in the ESR.
An ESR test is a non-specific measure of inflammation and can be affected by conditions other than inflammation. This test cannot identify the exact location of the inflammation in your body or what is causing it. Hence, an ESR test is usually performed along with a few other tests to identify or treat possible health concerns.
CBC (Complete Blood Count)
- Differential Leukocyte Count
- Red Blood Cell Count
- Hb (Hemoglobin)
- Platelet Count
- Total Leukocyte Count
- Hematocrit
- Mean Corpuscular Volume
- Mean Corpuscular Hemoglobin
- Mean Corpuscular Hemoglobin Concentration
- Mean Platelet Volume
- PDW
- RDW CV
- Absolute Leucocyte Count
The CBC (Complete Blood Count) test evaluates red blood cells (RBCs), white blood cells (WBCs}, and platelets. Each of these blood cells performs essential functions–RBCs carry oxygen from your lungs to the various body parts, WBCs help fight infections and other diseases, and platelets help your blood to clot–so determining their levels can provide significant health information. A CBC test also determines the hemoglobin level, a protein in RBC that carries oxygen from the lungs to the rest of your body. Evaluating all these components together can provide important information about your overall health.
This further contains
Lipid Profile
The Lipid Profile assesses the level of specific fat molecules called lipids in the blood and helps determine the risk of heart ailments. This test determines the amount of different types of lipids, including total cholesterol, low-density lipoprotein (LDL) cholesterol, very-low-density lipoprotein (VLDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. Lipids play a pivotal role in the functioning of the body. They are crucial components of the cell membranes and hormones, provide cushioning, and are a storehouse of energy. Any alterations in the lipid levels may lead to potential heart ailments, making their monitoring crucial.
Know more about Lipid Profile
Cholesterol - LDL
The Cholesterol - LDL test measures the concentration of low-density lipoprotein (LDL) cholesterol in the blood. LDL cholesterol plays an important role in your body. It carries cholesterol from your liver to other parts of the body where it's needed for things like building cell walls and making hormones. However, it is often referred to as "bad" cholesterol because when present in excess in your blood, it can stick to your blood vessel walls leading to the formation of plaque, making them narrow and less flexible. When this happens, it's harder for the blood to flow, which can lead to heart problems, like heart attacks and strokes. By measuring LDL cholesterol levels, your doctor can assess your risk of developing cardiovascular diseases and can recommend appropriate preventive or treatment strategies.
Triglycerides
The Triglycerides test measures the amount of triglycerides in the blood and helps evaluate your risk of developing cardiovascular diseases. Triglycerides are a type of fat (lipid) that your body uses as a source of energy. When you consume more calories than your body needs, the excess calories are converted into triglycerides and stored in fat cells for later use. High triglyceride levels can contribute to the hardening and narrowing of arteries, increasing the risk of heart attack, stroke, and other related conditions.
Cholesterol - Total
The Cholesterol - Total test measures the total amount of cholesterol (fats) in your blood. Cholesterol is mainly synthesized in the liver and partially in the intestines. It acts as a building block for cell membranes, is a precursor to vital hormones, and helps produce bile acids that help digest fats. Cholesterol is transported through the blood as lipoproteins: low-density lipoprotein (LDL) and high-density lipoprotein (HDL). An optimal amount of these proteins is necessary for proper body functioning.
Cholesterol - HDL
The Cholesterol - HDL test measures the concentration of high-density lipoprotein (HDL) cholesterol in the blood. HDL cholesterol plays a crucial role in maintaining cardiovascular health, as it helps transport excess low-density lipoprotein (LDL) cholesterol from the bloodstream back to the liver for excretion. This process prevents plaque buildup on the blood vessel walls, which can cause them to become narrow and less flexible. Higher HDL cholesterol levels are generally associated with a lower risk of heart problems, such as heart attacks and strokes. By measuring HDL cholesterol levels, your doctor can assess your risk of developing cardiovascular diseases and recommend appropriate preventive or treatment strategies, including lifestyle modifications and medications.
Very Low Density Lipoprotein
The Very Low Density Lipoprotein test measures the concentration of very-low-density lipoprotein (VLDL) cholesterol in the blood. VLDL cholesterol plays a vital role in the body's metabolic processes. It is produced by the liver and is used to transport triglycerides, a type of fat, from the liver to various tissues throughout the body, where they are either utilized for energy or stored for later use. Though VLDL cholesterol is essential for the body's normal functioning, it is harmful if present in excess amounts. By measuring VLDL cholesterol levels, your doctor can assess your risk of developing cardiovascular diseases and recommend appropriate preventive or treatment strategies.
Total Cholesterol/HDL Cholesterol Ratio
The Total Cholesterol/HDL Cholesterol Ratio test measures the ratio of total cholesterol and high-density lipoprotein (HDL)/good cholesterol in your blood which is a significant indicator of cardiovascular health. This ratio is calculated by dividing the total cholesterol by the HDL number. A high ratio indicates a higher amount of 'bad' cholesterol relative to 'good' cholesterol, implying a higher risk of developing heart disease. Conversely, a lower ratio implies a higher amount of 'good' cholesterol relative to 'bad' cholesterol, indicating a lower risk.
LDL/HDL Ratio
An LDL/HDL Ratio test measures the ratio of low-density lipoproteins (LDL) to high-density lipoproteins (HDL) in your blood. These two types of lipoproteins carry cholesterol throughout the body. LDL, often referred to as the 'bad' cholesterol, carries cholesterol to the cells that need it. However, if there is too much LDL cholesterol in the blood, it can combine with other substances and form plaque in the arteries, leading to cardiovascular diseases. On the other hand, HDL, often referred to as the 'good' cholesterol, helps remove other forms of cholesterol, including LDL, from the bloodstream. It transports cholesterol back to the liver, where it is broken down and eliminated from the body, thus reducing the risk of cholesterol buildup and heart disease. The LDL/HDL ratio is a significant indicator of cardiovascular health. A high ratio indicates a higher amount of 'bad' cholesterol relative to 'good' cholesterol, implying a higher risk of developing heart disease. Conversely, a lower ratio implies a higher amount of 'good' cholesterol relative to 'bad' cholesterol, indicating a lower risk.
Non HDL Cholesterol
The Non HDL Cholesterol test looks for the “bad” cholesterol particles that are likely to contribute to heart problems. These bad particles include LDL (low-density lipoprotein) cholesterol, VLDL (very-low-density lipoprotein) cholesterol, and remnants of other cholesterol-carrying molecules. Cholesterol is a waxy substance that circulates in your bloodstream and is essential for various bodily functions. However, too much of “bad” types of cholesterol can build up in your arteries and increase the risk of heart conditions. LDL and VLDL cholesterol particles are often referred to as the "bad" cholesterol because they can stick to the walls of your arteries and form plaque, narrowing the arteries and restricting blood flow to your heart. By measuring non-HDL cholesterol, your doctor can assess your risk of heart disease and determine if any interventions or lifestyle changes are needed to protect your heart.
PSA (Prostate Specific Antigen) Total
The PSA (Prostate Specific Antigen) Total test measures the level of prostate-specific antigen (PSA) in the blood. PSA is a protein secreted by the prostate gland in males and is found in two forms: bound PSA (bound to other proteins) and free PSA. A PSA (Prostate Specific Antigen) Total test measures both free and bound PSA levels. Most of the PSA produced in the body passes in the seminal fluid and only a small amount is secreted into the blood.
PSA levels in the blood get elevated in conditions affecting prostate health, like prostate cancer, prostatitis, and prostate enlargement (benign prostatic enlargement or BPH). This test is used as a primary screening test along with DRE, before conducting other diagnostic procedures.
Know more about PSA (Prostate Specific Antigen) Total
Testosterone Total
The Testosterone Total test measures the level of testosterone hormone in the blood. Testosterone is a steroid hormone primarily produced in the testes in men, although it is also present in smaller quantities in the adrenal glands. In women, it is made in small amounts by the ovaries. It is predominantly associated with male physiology and significantly influences physiological functions in both men and women.
The pituitary gland produces luteinizing hormone (LH), which regulates testosterone production. As testosterone levels rise, LH production decreases, slowing down testosterone production. Conversely, when testosterone levels fall, LH production increases, stimulating testosterone production.
Most of the testosterone circulating in the blood gets attached to two proteins, albumin and sex hormone-binding globulin (SHBG), and some of it remains unattached, called free testosterone. Free testosterone and albumin-bound testosterone are also known as bioavailable testosterone, as they are readily available for the body to use for proper functioning.
Know more about Testosterone Total
LFT (Liver Function Test)
An LFT (Liver Function Test) helps determine the health of your liver by measuring various components like enzymes, proteins, and bilirubin. These components help detect inflammation, infection, diseases, etc., of the liver and monitor the damage due to liver-related issues.
Know more about LFT (Liver Function Test)
Gamma Glutamyl Transferase
Gamma-Glutamyl Transferase (GGT) is an enzyme found in various organs, with the highest concentration in the liver. Usually, this enzyme is present in low levels in the blood. However, when there is liver damage or disease, GGT is released into the bloodstream, causing an increase in GGT levels. In addition to the liver, GGT can also be elevated in conditions affecting the bile ducts or the pancreas. It is usually, the first liver enzyme to rise in the blood when there is any damage or obstruction in the bile duct, making it one of the most sensitive liver enzyme tests for detecting bile duct problems.
SGPT
An SGPT test measures the amount of ALT or SGPT enzyme in your blood. ALT is most abundantly found in the liver but is also present in smaller amounts in other organs like the kidneys, heart, and muscles. Its primary function is to convert food into energy. It also speeds up chemical reactions in the body. These chemical reactions include the production of bile and substances that help your blood clot, break down food and toxins, and fight off an infection.
Elevated levels of ALT in the blood may indicate liver damage or injury. When the liver cells are damaged, they release ALT into the bloodstream, causing an increase in ALT levels. Therefore, the SGPT/ALT test is primarily used to assess the liver's health and to detect liver-related problems such as hepatitis, fatty liver disease, cirrhosis, or other liver disorders.
Alkaline Phosphatase (ALP)
An Alkaline Phosphatase (ALP) test measures the quantity of ALP enzyme present throughout the body. The main sources of this enzyme are the liver and bones. It exists in different forms depending on where it originates, such as liver ALP, bone ALP, and intestinal ALP. In the liver, it is found on the edges of the cells that join together to form bile ducts.
ALP levels can be increased during pregnancy as it is found in the placenta of pregnant women. It is also higher in children because their bones are in the growth phase. ALP is often high during growth spurts (a short period when an individual experiences quick physical growth in height and body weight).
SGOT
An SGOT test measures the levels of serum glutamic-oxaloacetic transaminase (SGOT), also known as aspartate aminotransferase (AST), an enzyme produced by the liver. SGOT is present in most body cells, most abundantly in the liver and heart. The primary function of this enzyme is to convert food into glycogen (a form of glucose), which is stored in the cells, primarily the liver. The body uses this glycogen to generate energy for various body functions.
Protein Total, Serum
- Albumin/Globulin Ratio, Serum
- Protein Total
- Serum Albumin
- Globulin, Serum
The Protein Total, Serum test measures the amount of proteins in the body. Proteins are known as the building blocks of all cells and tissues. They play a crucial role in the growth and development of most of your organs and in making enzymes and hormones. There are two types of proteins found in the body, namely albumin and globulin. About 60% of the total protein is made up of albumin, which is produced by the liver. It helps to carry small molecules such as hormones, minerals, and medicines throughout the body. It also serves as a source of amino acids for tissue metabolism. On the other hand, globulin is a group of proteins that are made by the liver and the immune system. They play an important role in liver functioning, blood clotting, and fighting off infections.
This further contains
Bilirubin (Total, Direct and Indirect)
- Bilirubin Direct
- Bilirubin Total
- Bilirubin Indirect
The Bilirubin (Total, Direct and Indirect) test measures the level of three forms of bilirubin such as total bilirubin, direct (conjugated bilirubin), and indirect (unconjugated) bilirubin in the blood. Total bilirubin represents the sum of direct and indirect bilirubin. Direct bilirubin is the water-soluble form of bilirubin that has been processed by the liver via a conjugation process with glucuronic acid and is ready to be excreted into the bile ducts and ultimately into the intestines. Indirect bilirubin is the water-insoluble form of bilirubin that has not yet been processed by the liver and is bound to albumin in the blood. It is formed in the spleen and liver during the breakdown of hemoglobin from old or damaged red blood cells and cannot be excreted directly by the liver. Instead, it is transported to the liver, where it undergoes conjugation to become direct bilirubin.
Getting tested with the Bilirubin (Total, Direct and Indirect) test provides valuable information into various aspects of liver function, bile duct health, and the body’s ability to break down and eliminate bilirubin.
This further contains
Thyroid Profile Total (T3, T4 & TSH)
The Thyroid Profile Total (T3, T4 & TSH) measures the levels of three hormones in the blood, namely triiodothyronine hormone (T3) total, thyroxine hormone (T4) total, and thyroid-stimulating hormone (TSH). T3 and T4 are thyroid hormones that help regulate metabolism and energy levels in the body. On the other hand, TSH is produced by the pituitary gland and stimulates the thyroid gland to produce T3 and T4 hormones. The serum levels of the thyroid hormones and TSH have an inverse relationship, i.e., low T4 (as observed in hypothyroidism) and high T4 (as seen in hyperthyroidism) levels are associated with high and low TSH levels, respectively.
Know more about Thyroid Profile Total (T3, T4 & TSH)
Thyroxine - Total
The Thyroxine - Total test measures both the bound and unbound/free form of thyroxine (T4) hormone in the blood. T4 exists in the blood in two forms: bound (attached to proteins) and free (not attached to proteins). Most of the T4 circulating in the blood is bound to proteins and only a small part is free. It is necessary to maintain a fine balance of these forms to ensure the proper functioning of the body.
Triiodothyronine Total
The Triiodothyronine Total test measures triiodothyronine, also known as T3, hormone that is produced by the thyroid gland. T3 hormone plays an important role in regulating the body's metabolism, energy levels, and growth & development. It exists in the blood in two forms: free T3 and bound T3. Free T3 is not bound to proteins in the blood and is the active form of T3. Whereas, bound T3 is bound to proteins, such as albumin and thyroid hormone binding globulin (THBG), which prevent it from entering the body tissues.
TSH (Thyroid Stimulating Hormone) Ultrasensitive
The TSH (Thyroid Stimulating Hormone) Ultrasensitive test measures the levels of TSH hormone in the blood. TSH is produced by the pituitary gland located in the brain. Its function is to stimulate and regulate the functioning of the thyroid gland. It signals the thyroid gland to increase or decrease the production of thyroid hormones T3 and T4 (essential for regulating our body’s metabolism, temperature, heart rate, and growth) when their levels are low or high, respectively. Therefore, when the levels of T3 & T4 decrease, the pituitary gland is stimulated to release TSH. This high TSH level, in turn, stimulates the thyroid gland to release more thyroid hormones (T3 & T4); the vice-versa happens when the levels of thyroid hormones increase.
Vitamin D (25-Hydroxy) & Vitamin B12
The Vitamin D (25-Hydroxy) & Vitamin B12 package is tailored to analyze the levels of two important vitamins in your body: vitamin D (25-OH) and vitamin B12. Vitamin D is an essential nutrient that can be synthesized in the body upon healthy exposure to sunlight or absorbed from dietary sources. Vitamin B12 is necessary for various health aspects, such as maintaining a healthy nervous system, making red blood cells, and creating the genetic material of our cells.
Know more about Vitamin D (25-Hydroxy) & Vitamin B12
Vitamin B12
The Vitamin B12 test measures your vitamin B12 levels. Vitamin B12 is essential for various health aspects, such as maintaining a healthy nervous system, making red blood cells, and creating the genetic material of our cells. Low vitamin B12 levels are more likely to occur in older adults, children, vegans, vegetarians, people with diabetes, individuals who underwent gastric bypass surgery, women who are breastfeeding, and in conditions that impact absorption of this vitamin, like Crohn’s disease. Higher vitamin B12 levels seen in pateint on vitamin suplement does not need treatment as excessive vitamin B12 is usually removed through the urine. However, some conditions, such as liver diseases and myeloproliferative disorders, can cause an increase in vitamin B12 levels, thereby affecting blood cell production.
Vitamin D (25-Hydroxy)
The Vitamin D (25-Hydroxy) test measures the levels of vitamin D in the body. It is an essential nutrient that can be synthesized in the body upon healthy exposure to sunlight or absorbed from dietary sources. It majorly exists in two forms: Vitamin D2 (ergocalciferol) and Vitamin D3 (cholecalciferol). Vitamin D2 is present in plants, such as yeast or mushrooms, and is available as a supplement in fortified foods, and vitamin D3 is found in foods like cheese, green vegetables, mushrooms, egg yolks, and fatty fish.
Both forms of vitamin D (D2 and D3) need to undergo some chemical changes before being available for use in the body. These chemical changes take place in the liver or kidneys.The levels of 25-hydroxy Vitamin D in blood is considered the best parameter to assess vitamin D status of the body. A Vitamin D (25-Hydroxy) measures the level of Total 25-OH vitamin D (D2+D3) , but it does not differentiate between the two forms as it is the major form of vitamin D that circulates in the blood.
KFT with Electrolytes (Kidney Function Test with Electrolytes)
The KFT with Electrolytes (Kidney Function Test with Electrolytes) test determines the health of your kidneys. It evaluates parameters such as creatinine, blood urea nitrogen (BUN), uric acid, electrolytes (sodium, potassium, and chloride), blood urea and BUN/ creatinine ratio. This test also helps diagnose possible kidney disorders like inflammation, infection, or functional damage.
Know more about KFT with Electrolytes (Kidney Function Test with Electrolytes)
Serum Creatinine
The Serum Creatinine test measures the level of creatinine in the blood. Creatinine is a byproduct of muscles’ wear and tear during energy production. The kidneys remove it from the body by filtering it from the blood and releasing it into the urine. Therefore, blood creatinine levels indicate how well the kidneys are functioning in filtering and removing waste products from the blood. Generally, higher creatinine levels in the blood may indicate reduced kidney function, while lower levels may suggest decreased muscle mass.
Uric Acid
An Uric Acid test determines the level of uric acid in your body. Uric acid is a nitrogenous compound produced by the metabolic breakdown of purine. Purines are present as nitrogenous bases in the DNA and are also found in food like red meat and seafood.
Most uric acid dissolves in the blood and goes into your kidneys. From there, it passes through your body via the urine. Decreased elimination of uric acid is often a result of impaired kidney function due to kidney disease. In many cases, the exact cause of excess uric acid is unknown. Doctors seldom need to test for low levels of uric acid.
Blood Urea Nitrogen
The Blood Urea Nitrogen test measures the levels of urea nitrogen in the blood. Blood urea is a waste product that is formed in the liver when you eat food and the protein is metabolized into amino acids. This process leads to the production of ammonia that is further converted into urea. Both ammonia and urea are nitrogenous compounds. Your liver releases urea into the blood which is then carried out to the kidneys. In the kidneys, urea is filtered from the blood and flushed out of the body via urine. This is a continuous process, so a small amount of urea nitrogen always remains in the blood.
In the case of a kidney or liver disease, there is a change in the amount of urea present in the blood. If your liver produces urea in an increased amount or if there is any problem in kidney functioning, there might be difficulty in filtering out the waste products from the blood, which can result in increased urea levels in the blood.
BUN/Creatinine Ratio
The BUN/Creatinine Ratio test helps compare the levels of blood urea nitrogen to that of creatinine in your body. Urea is a waste product that is formed in the liver when you eat protein, which is then metabolized into amino acids. This process leads to the production of ammonia that is further converted into urea. Later, the urea is passed out of your body through the urine. On the other hand, creatinine is a byproduct produced by muscles during energy production. Therefore, the more muscle you have, the more creatinine your body produces. The kidneys remove both the urea and creatinine via urine, and this test determines how well your kidneys are functioning.
Blood Urea
The Blood Urea test measures the level of urea in the blood. Urea is a byproduct of protein metabolism. Proteins you consume in your diet are digested and converted into amino acids, which are then utilized by the body. This metabolic process produces a toxic byproduct known as ammonia. Ammonia is then rapidly converted into urea by your liver. Urea is comparatively less toxic than ammonia and is transported to the kidneys via the blood. The kidneys then filter it out through the urine. This process continues and the body keeps producing and eliminating urea, maintaining its low and steady levels in the blood.
Sodium
-
By producing hormones that control the elimination of sodium through urine, such as natriuretic peptides and aldosterone.
-
By producing hormones that prevent water loss, such as antidiuretic hormone (ADH).
-
By controlling thirst (an increase in blood sodium level can make you thirsty and cause you to drink water, returning your sodium to normal).
The Sodium test measures the amount of sodium in your body. Sodium is present in all body fluids and is found in the highest concentration in the extracellular fluid. The body absorbs the required amount of sodium through dietary salts, and the kidneys eliminate the remaining sodium. The body keeps your blood sodium within a regular and steady range by following three mechanisms:
These mechanisms regulate the amount of water and sodium in the body and control blood pressure by keeping the amount of water in check. When the sodium level in the blood changes, the water content in your body changes. These changes can be associated with dehydration, edema, and changes in blood pressure.
Chloride
The Chloride test measures the amount of chloride in your body. Chloride is present in all body fluids and is found in the highest concentration in the blood and extracellular fluid (fluid present outside the cells). The body gets most of the chloride through dietary salt (sodium chloride or NaCl) and a small amount through other food items. The required amount of chloride is absorbed in the body and the excess amount is excreted by the kidneys through urine. When the chloride is combined with sodium it is mostly found in nature as salt. Chloride generally increases or decreases in direct relationship to sodium but may also change without any changes in sodium levels when there are problems with the body's pH. Usually, the normal blood chloride level remains steady with a slight fall after meals (because the stomach produces hydrochloric acid using chloride from the blood after we eat food).
Potassium
The Potassium test measures the levels of potassium in your body. Potassium is one of the key electrolytes that helps in the functioning of the kidneys, heart, nerves, and muscles. It also balances the effect of sodium and helps keep your blood pressure normal. The body absorbs the required amount of potassium from the dietary sources and eliminates the remaining quantity through urine. Potassium level is typically maintained by the hormone aldosterone. Aldosterone acts on the nephrons present in the kidneys and activates the sodium-potassium pump that helps the body reabsorb sodium and excrete potassium. This aids in maintaining a regular and steady potassium level in the blood.
Serum Iron Studies Comprehensive
The Serum Iron Studies Comprehensive package measures the level of iron in the body. It comprises a series of blood tests, including serum iron test that helps to evaluate iron level, total iron binding capacity (TIBC) test that helps to assess the ability of the body to transport iron in the blood, unsaturated iron binding capacity (UIBC) test that reflects binding of iron with transferrin, which is the main protein that binds with iron, transferrin saturation test that checks how many places on the transferrin that can hold iron are doing so, and ferritin test that detects ferritin protein in the blood and helps determine how much iron is stored in your body.
Know more about Serum Iron Studies Comprehensive
Serum Ferritin
The Serum Ferritin test measures the concentration of ferritin in the blood. Ferritin is a protein found in cells, particularly in the liver, spleen, and bone marrow, that stores iron in a soluble or nontoxic form. When the body needs iron for essential functions like producing red blood cells and carrying oxygen, it releases iron from ferritin into the blood.
The Serum Ferritin test provides valuable information about the body's iron storage levels. Low ferritin levels may indicate iron deficiency, a condition where the body lacks enough iron to function properly. In contrast, elevated ferritin levels can indicate iron overload, a condition known as hemochromatosis. Iron overload can lead to organ damage if not adequately managed, making early detection crucial.
The Serum Ferritin test is a critical tool for assessing iron status, diagnosing iron deficiency anemia, monitoring treatment progress, detecting other iron-related disorders, and maintaining overall health.
Total Iron Binding Capacity
The Total Iron Binding Capacity test measures the ability of your blood to bind and transport iron, and therefore reflects your body's iron stores. TIBC correlates with the amount of transferrin, a protein, in your blood, that helps bind iron and facilitates its transportation in the blood. Usually, about one-third of the transferrin measured is being used to transport iron, and this is called transferrin saturation.
Iron, Serum
An Iron, Serum test determines iron levels in the blood and can help diagnose conditions like anemia, or iron overload in the body. People usually suffer from low iron levels in the blood if they prefer a diet that has low iron content, or if their body has trouble absorbing the iron from the foods or supplements they intake. Low iron levels can also occur due to intense blood loss or even during pregnancy. Similarly, an excess amount of iron in the blood can occur due to over-intake of iron supplements, blood transfusions, or if you are suffering from a condition called hemochromatosis (a rare genetic disorder that causes too much iron to build up in the body or cause problems in the body to remove excess iron).
Therefore, doctors often suggest an Iron, Serum to help check the status of your iron level, get valuable information about your nutritional well-being, detect potential health issues (if any), and take timely preventive measures.
Unsaturated Iron Binding Capacity
An Unsaturated Iron Binding Capacity test determines the reserve capacity of transferrin, i.e., the portion not yet saturated with iron. The iron-binding capacity of our body can be segregated into two parts – Total Iron Binding Capacity (TIBC) and Unsaturated Iron Binding Capacity (UIBC). UIBC refers to the capacity of transferrin, a protein that transports iron, to bind with additional iron. In easy terms, it represents the available "slots" on transferrin to carry iron molecules. Unlike iron saturation, which assesses the occupied slots, UIBC measures the unoccupied ones.
Transferrin Saturation
The Transferrin Saturation test determines an individual’s iron status by using the ratio of serum iron concentration and total iron binding capacity (TIBC) as a percentage. The test tells us how much iron in the blood is bound to transferrin, the main protein in the blood that binds to iron and transports it throughout the body. Under normal conditions, transferrin is one-third saturated with iron, so about two-thirds of its capacity is held in reserve. This test is often employed alongside others to evaluate iron levels and diagnose conditions like iron deficiency anemia if transferrin saturation is low or hemochromatosis (an iron overload disorder) if transferrin saturation is higher than normal.